Given:
a = 13
b = 16.9
A = 26 degrees
Asked: What are the values for angles B and C and side c?
Solution:
To solve this problem, we will be needing the formula for the sine law.
Sine Law Formula:
![(a)/(\sin A)=(b)/(\sin B)=(c)/(\sin C)](https://img.qammunity.org/2023/formulas/mathematics/college/ulgkpk1301y5kolk344hriqzqe10ewrdh2.png)
Now, we will first solve for the angle B.
![\begin{gathered} (a)/(\sin A)=(b)/(\sin B) \\ (13)/(\sin 26)=(16.9)/(\sin B) \\ 13\sin B=16.9\sin 26 \\ (13\sin B)/(13)=(16.9\sin 26)/(13) \\ \sin B=(16.9\sin26)/(13) \\ B=\sin ^(-1)((16.9\sin26)/(13)) \\ B=34.75203189 \\ B=35\text{ degr}ees \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r6l35zulbcemiemxv6g5kjfiiyypgdye28.png)
Now that we have angle B, we can now find angle C by combining all the angles and equate it to 180 degrees.
![\begin{gathered} A+B+C=180 \\ 26+35+C=180 \\ 61+C=180 \\ C=180-61 \\ C=119\text{ degr}ees \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ysdf5wi84o0yjhi5jchangm0qhklghzvmw.png)
In order to find side c, we will use again the sine law formula.
![\begin{gathered} (a)/(\sin A)=(c)/(\sin C) \\ (13)/(\sin 26)=(c)/(\sin 119) \\ 13\sin 119=c\sin 26 \\ (13\sin119)/(\sin26)=(c\sin 26)/(\sin 26) \\ c=(13\sin119)/(\sin26) \\ c=25.9370542 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xytuxveezp7pjbyjr75xgxpc6k4ulx7juc.png)
ANSWER:
Angle B = 35 degrees
Angle C = 119 degrees
Side c = 25.9