122k views
5 votes
Find the expected value of the winningsfrom a game that has the followingpayout probability distribution:14Payout (S)68.10Probability 0.12 0.2 0.38 0.2 0.1Expected Value = [?]Round to the nearest hundredth.

User Wanaryytel
by
4.1k points

1 Answer

5 votes

The Expected value of a probability distribution is calculated by multiplying the Value by their probability and taking the sum.


E(x)=\sum ^(\square)_(\square)p(x_i)* X_i
\begin{gathered} E(x)=1(0.12)+4(0.2)+6(0.38)+8(0.2)+10(0.1) \\ =0.12+0.8+2.28+1.6+1 \\ =5.8 \end{gathered}

Hence the Expected value is 5.80

User Oyon
by
4.4k points