216k views
4 votes
Evaluate the integral and interpret it as the area of a region

Evaluate the integral and interpret it as the area of a region-example-1

1 Answer

3 votes

Given:


\int ^{(\pi)/(2)}_0|4\sin x-4\cos (2x)|dx

First, eliminate absolute

This gives


\begin{gathered} \int ^{(\pi)/(2)}_0|4\sin x-4\cos (2x)|dx \\ =\int ^{(\pi)/(6)}_0-4\sin x+4\cos (2x)dx+\int ^{(\pi)/(2)}_{(\pi)/(6)}4\sin x-4\cos (2x)dx \end{gathered}

Integrating each part gives


\begin{gathered} \int ^{(\pi)/(6)}_0-4\sin x+4\cos (2x)dx+\int ^{(\pi)/(2)}_{(\pi)/(6)}4\sin x-4\cos (2x)dx \\ =4\cos x+2\sin (2x)|^{(\pi)/(6)^{}_{}}_0-4\cos x-2\sin (2x)|^{(\pi)/(2)}_{(\pi)/(6)} \end{gathered}

Simplifying further gives


\begin{gathered} 4\cos x+2\sin (2x)|^{(\pi)/(6)^{}_{}}_0 \\ =\mleft\lbrace(4\cos ((\pi)/(6))+2\sin ((2\pi)/(6))-(4\cos 0+2\sin 0)\mright\rbrace \\ =(2\sqrt[]{3}+\sqrt[]{3}-(4+0) \\ =3\sqrt[]{3}-4 \end{gathered}

Also


\begin{gathered} -4\cos x-2\sin (2x)|^{(\pi)/(2)}_{(\pi)/(6)} \\ =-4\cos ((\pi)/(2))-2\sin ((2\pi)/(2))-(-4\cos ((\pi)/(6))-2\sin ((2\pi)/(6)) \\ =0+0-(-2\sqrt[]{3}-\sqrt[]{3)} \\ =2\sqrt[]{3}+\sqrt[]{3} \\ =3\sqrt[]{3} \end{gathered}

Hence the solution is


\begin{gathered} \int ^{(\pi)/(6)}_0-4\sin x+4\cos (2x)dx+\int ^{(\pi)/(2)}_{(\pi)/(6)}4\sin x-4\cos (2x)dx \\ =3\sqrt[]{3}-4+3\sqrt[]{3} \\ =6\sqrt[]{3}-4 \end{gathered}

Therefore, the answer is


6\sqrt[]{3}-4

User Gha
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories