153k views
3 votes
How do I find the values of x, y, and z?

How do I find the values of x, y, and z?-example-1
User Snicolas
by
7.2k points

1 Answer

7 votes

Pythagorean theorem:


\begin{gathered} hypotenuse^2=Leg1^2+Leg2^2 \\ Leg1^2=hypotenuse^2-Leg2^2 \end{gathered}

Use the pythagorean theorem above to find the values of x, y and z as follow:

1. From the triangle in the right find the value of y^2 (Leg 1)


y^2=z^2-\left(x+1\right)^2

2. From the triangle in the left find the value of y^2 (Leg 1):


y^2=\left(x+2\right)^2-x^2

3. From the big triangle find the value of z^2 (Leg 1):


\begin{gathered} z^2=\left(x+\left(x+1\right)\right)^2-\left(x+2\right)^2 \\ \\ z^2=\left(2x+1\right)^2-\left(x+2\right)^2 \end{gathered}

3. Equal the expressions of y^2 (step 1 and step 2):


z^2-\left(x+1\right)^2=\left(x+2\right)^2-x^2

4. Substitute the z^2 in the equation above by the value of z^2 you get in step 3:


\lparen2x+1)^2-\left(x+2\right)^2-\left(x+1\right)^2=\left(x+2\right)^2-x^2

5. Solve x in the equation above:


\begin{gathered} Subtract\text{ \lparen x+2\rparen}^2\text{ in both sides of the equation:} \\ \lparen2x+1)^2-\left(x+2\right)^2-\left(x+2\right)^2-\left(x+1\right)^2=\left(x+2\right)^2-\left(x+2\right)^2-x^2 \\ \lparen2x+1)^2-2\left(x+2\right)^2-\left(x+1\right)^2=-x^2 \\ \\ Add\text{ x}^2\text{ in both sides of the equation:} \\ \lparen2x+1)^2-2\left(x+2\right)^2-\left(x+1\right)^2+x^2=-x^2+x^2 \\ \lparen2x+1)^2-2\left(x+2\right)^2-\left(x+1\right)^2+x^2=0 \\ \\ Simplify: \\ \left(4x^2+4x+1\right)^2-2\lparen x^2+4x+4)-\left(x^2+2x+1\right)+x^2=0 \\ 4x^2+4x+1-2x^2-8x-8-x^2-2x-1+x^2=0 \\ 2x^2-6x-8=0 \end{gathered}

Use quadratic formula to solve x:


\begin{gathered} ax^2+bx+c=0 \\ x=(-b\pm√(b^2-4ac))/(2a) \\ \\ \\ x=(-\left(-6\right)\pm√(\left(-6\right)^2-4\left(2\right)\left(-8\right)))/(2\left(2\right)) \\ \\ x=(6\pm√(36+64))/(4) \\ \\ x=(6\pm√(100))/(4) \\ \\ x_1=(6-10)/(4)=(-4)/(4)=-1 \\ \\ x_2=(6+10)/(4)=(16)/(4)=4 \end{gathered}

As x cannot be a negative value (a side of a triangle cannot be negative) the value of x is 4

6. Use the value of x to solve y in the equation in step 2:


\begin{gathered} y^2=(x+2)^2-x^2 \\ \\ y^2=\left(4+2\right?^2-\left(4\right?^2 \\ \\ y^2=6^2-16 \\ y^2=36-16 \\ y^2=20 \\ y=√(20) \\ y=2√(5) \end{gathered}

7. Use the value of x to solve z in the equation in step 3:


\begin{gathered} z^(2)=(2x+1)^(2)-(x+2)^(2) \\ \\ z^2=\left(2\left(4\right)+1\right)^2-\left(4+2\right)^2 \\ z^2=\left(8+1\right)^2-6^2 \\ z^2=9^2-6^2 \\ z^2=81-36 \\ z^2=45 \\ z=√(45) \\ z=3√(5) \end{gathered}

Then, the values of x, y and z are:


\begin{gathered} x=4 \\ y=2√(5) \\ z=3√(5) \end{gathered}

User Gal Talmor
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories