188k views
3 votes
Determine the constraints of a and b such that g(x) is continuous for all values of x.

Determine the constraints of a and b such that g(x) is continuous for all values of-example-1
User Zpontikas
by
3.0k points

1 Answer

4 votes

Solution

g(x) is continuous at x = 1 if


\lim_(x\to1^-)g(x)=\lim_(x\to1+)g(x)=g(1)
\Rightarrow\lim_(x\to1^-)g(x)=\lim_(x\to1)(ax-b)/(x-2)=b-a
\lim_(x\to1^+)g(x)=\lim_(x\to1)-3x=-3

g(x) is continuous at x = 2 if


\lim_(x\to2^-)g(x)=\lim_(x\to2^+)g(x)=g(2)
\Rightarrow\lim_(x\to2^-)g(x)=\lim_(x\to2)-3x=-6
\Rightarrow\lim_(x\to2^+)g(x)=\lim_(x\to2)bx^2-a=4b-a

So we have the equations


\begin{gathered} b-a=-3\text{ ----\lparen1\rparen} \\ \\ 4b-a=-6\text{ ----\lparen2\rparen} \end{gathered}

Equation (1) - (2)


\begin{gathered} -3b=3 \\ \\ \Rightarrow b=-1 \\ \text{ Substitute b=-1 in equation \lparen1\rparen} \\ \Rightarrow a=b+3=-1+3=2 \end{gathered}

Hence

a = 2

b = -1

User Betelgeuse
by
3.3k points