Answer:
S6 = 22
Explanation:
Given the series:
![15,5,(5)/(3)\cdots](https://img.qammunity.org/2023/formulas/mathematics/college/nl3z5lixw2i98yqa7x6etf72nz4as8nw8j.png)
The sequence is a geometric sequence with:
• The first term, a = 15
,
• The common ratio, r = 1/3
The sum of nth terms of a geometric sequence is determined using the formula:
![S_n=(a(1-r^n))/(1-r)](https://img.qammunity.org/2023/formulas/mathematics/college/et0114ysm01zr7mkp9qp17eorbkdf9d0u1.png)
Substitute a=15, r=1/3 and n=6.
![\begin{gathered} S_6=(15(1-((1)/(3))^6))/(1-(1)/(3)) \\ =(15(1-(1)/(729)))/((2)/(3)) \\ =(15((728)/(729)))/((2)/(3)) \\ =(1820)/(81) \\ =22.47 \\ \implies S_6\approx22 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fyc18qm92ha976a8yqbbthlou6kyne8dqf.png)
The sum of the first 6 ters of the series is 22. (roundd to the nearest integer)