Determine the length of x by using trigonometry in smaller triangle.
![\begin{gathered} \sin 60=(x)/(4) \\ \frac{\sqrt[]{3}}{2}=(x)/(4) \\ x=2\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/97qnt0va56bzhj81o8lhul66eiax1p46jk.png)
Consider the larger triangle.
Determine the length of side b by using trigonometry.
![\begin{gathered} \tan 60=(b)/(4) \\ \sqrt[]{3}=(b)/(4) \\ b=4\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s5yqmho1oamcucnwrb3qnyj8mtkh9vglwv.png)
Consider the upper right angle triangle.
Determine the length of side y by using the trigonometric ratio.
![\begin{gathered} \text{tan}30=(x)/(y) \\ \frac{1}{\sqrt[]{3}}=\frac{2\sqrt[]{3}}{y} \\ y=2\sqrt[]{3}\cdot\sqrt[]{3} \\ =2\cdot3 \\ =6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ytcvrlytx51u365n0yxcbanbgza7884v6o.png)