Answer:
y=2x+6
Step-by-step explanation:
Given any two points on a line, to find the equation of the line, we can use the two-point form of the equation of a line stated below.
![(y-y_1)/(x-x_1)=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/3wt52xf3n7hjhwt6qolt0l02t41489sre0.png)
If the points are:
![\mleft(x_1_{},y_1\mright)=\mleft(-5,-4\mright),(x_2,y_2)=(-1,4)](https://img.qammunity.org/2023/formulas/mathematics/college/hfa5unkqb0cf7axob2vxtn96nlf3qk8oki.png)
Substitute into the formula:
![\begin{gathered} (y-(-4))/(x-(-5))=(4-(-4))/((-1)-(-5))\implies(y+4)/(x+5)=(4+4)/(-1+5)=(8)/(4) \\ \implies(y+4)/(x+5)=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cte64luirpmgmeuz5fvrha0bce0wp50wd5.png)
Next, we write it in the slope-intercept form:
![\begin{gathered} y+4=2(x+5) \\ y=2x+10-4 \\ y=2x+6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/214s91kdonqlape6d1mbx1sfbt68sm6vl4.png)
The equation of the line is y=2x+6.