314,970 views
44 votes
44 votes
Here's the question. ​

Here's the question. ​-example-1
User Mr Baloon
by
2.4k points

1 Answer

6 votes
6 votes

Answer:

The value of T₂₀ - T₁₅ is -20.

Step-by-step Step-by-step explanation:

Given :

  • >> If for an A.P, d = -4

To Find :

  • >> T₂₀ - T₁₅

Using Formula :

General term of an A.P.


\star{\small{\underline{\boxed{\sf{\red{ T_n = a + (n - 1)d}}}}}}

  • >> Tₙ = nᵗʰ term
  • >> a = first term
  • >> n = no. of terms
  • >> d = common difference

Solution :

Firstly finding the A.P of T₂₀ by substituting the values in the formula :


{\dashrightarrow{\pmb{\sf{ T_n = a + (n - 1)d}}}}


{\dashrightarrow{\sf{ T_(20) = a + (20 - 1) d}}}


{\dashrightarrow{\sf{ T_(20) = a + (19)d}}}


{\dashrightarrow{\sf{ T_(20) = a + 19 * d}}}


{\dashrightarrow{\sf{ T_(20) = a + 19d}}}


{\star \: {\underline{\boxed{\sf{\pink{ T_(20) = a + 19d}}}}}}

Hence, the value of T₂₀ is a + 19d.


\rule{190}1

Secondly, finding the A.P of T₁₅ by substituting the values in the formula :


{\dashrightarrow{\pmb{\sf{ T_n = a + (n - 1)d}}}}


{\dashrightarrow{\sf{ T_(15)= a + (15 - 1) d}}}


{\dashrightarrow{\sf{ T_(15)= a + (14) d}}}


{\dashrightarrow{\sf{ T_(15)= a + 14 * d}}}


{\dashrightarrow{\sf{ T_(15)= a + 14d}}}


{\star{\underline{\boxed{\sf \pink{ T_(15)= a + 14d}}}}}

Hence, the value of T₁₅ is a + 14d


\rule{190}1

Now, finding the difference between T₂₀ - T₁₅ :


{\dashrightarrow{\pmb{\sf{T_(20) - T_(15)}}}}


{\dashrightarrow{\sf{(a + 19d) - (a + 14d)}}}


{\dashrightarrow{\sf{a + 19d - a - 14d}}}


{\dashrightarrow{\sf{a - a + 19d - 14d}}}


{\dashrightarrow{\sf{0+ 19d - 14d}}}


{\dashrightarrow{\sf{19d - 14d}}}


{\dashrightarrow{\sf{5 * - 4}}}


{\dashrightarrow{\sf{ - 20}}}


{\star \: \underline{\boxed{\sf{\pink{T_(20) - T_(15) = - 20}}}}}

Hence, the value of T₂₀ - T₁₅ is -20.


\underline{\rule{220pt}{3.5pt}}

User James Santiago
by
2.9k points