Concept
A standard deck of playing cards contains 52 cards. Divided equally into two colors "Red" and "Black". Deck of 52 cards has four suits "Spades", "Hearts", "Diamonds" and "Clubs". ... Each 4 suits contains 13 cards : Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King.
The total number of cards in a pack of a card is 52
Total number of Aces = 4
Use thr formula below to find the probability of drawing one card from a standard deck that is ace.
Probability of any event
![=\text{ }\frac{N\text{umber of required outcomes}}{N\text{umber of total possible outcomes}}](https://img.qammunity.org/2023/formulas/mathematics/college/ox6w53ogqcf4gf0vdpzkgkxh3or9hd6sry.png)
Number of total possible outcomes is the total number of cards in a deck of card.
= 52
Number of required outcomes is the number of ace cards in a deck of card
= 4
Probability of drawing an ace card
![\begin{gathered} =\text{ }(4)/(52) \\ =\text{ 0.077} \\ =\text{ 0.077 x 100\%} \\ =\text{ 7.7\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wq0s9ticu4qu4zplib6sb0n2qmtvbm26kj.png)
Final answer in percentage = 7.7%