Let's begin by identifying key information given to us:
This is an Arithmetic Sequence
![\begin{gathered} t_3=19 \\ t_(15)=-17 \\ t_(47)=? \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5qnkwy1s1xh79k1bt7pdg2zlothaze7471.png)
An Arithmetic Sequence is defined by the formula:
![\begin{gathered} t_n=a+(n-1)d \\ \Rightarrow t_3=a+(3-1)d \\ \Rightarrow a+2d=19 \\ a+2d=19------1 \\ \\ \Rightarrow t_(15)=a+(15-1)d \\ \Rightarrow a+14d=-17----2 \\ a+14d=-17----2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mrdbdpwo73dgidkq8t22ngmloawspwi1j3.png)
We will proceed to solve both equations simultaneously as shown below:
![\begin{gathered} a+2d=19------1 \\ a+14d=-17----2 \\ \text{Subtract equation 1 from 2, we have:} \\ a-a+14d-2d=-17-19 \\ 12d=-36 \\ d=-(36)/(12)=-3 \\ d=-3 \\ \text{Substitute ''d'' into equation 1, we have:} \\ a+2(-3)=19 \\ a-6=19 \\ a=19+6 \\ a=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/76jag7dsavunpasovvf3n78ojdz3yhep9g.png)
Since we know the values of ''a'' & ''d'', we will proceed to solve for t47
![\begin{gathered} t_n=a+(n-1)d \\ t_(47)=25+(47-1)(-3) \\ t_(47)=25+46(-3) \\ t_(47)=25-138 \\ t_(47)=-113 \\ \\ \therefore t_(47)=-113 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r113bhstf43np9mwn6twaacbajtp9hik2e.png)