Answer: x less equal to 0
![0\ge*](https://img.qammunity.org/2023/formulas/mathematics/college/7zxi8x6tq5rsqgap6whzt7wok2mw71oomp.png)
Step by step solution:
To solve the inequality:
![-6(1+2x)\ge6(2x-1)+2x](https://img.qammunity.org/2023/formulas/mathematics/college/fs39j46e30ximj0yqkk4cy7435yhg3jwid.png)
We start by taking out the parenthesis:
![-6-12x\ge12x-6+2x](https://img.qammunity.org/2023/formulas/mathematics/college/l58858qy0tlfdl50k4lqebd414jzh53yel.png)
We are going to add +12 on both sides:
![\begin{gathered} -6-12x+12x\ge12x-6+2x+12x \\ -6\ge26x-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hs4lfc8mqxrrym21ax52cv3pi2uacgsurj.png)
Adding +6 to each of the sides, left and right, to maintain the balance of the inequality, each operation must be performed on both sides:
![\begin{gathered} -6+6\ge26x-6+6 \\ 0\ge26x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vlmnet49hytjtv1jlhmd4tffyuu9mbe7q8.png)
Now we divide each side by 1/26:
![\begin{gathered} (0)/(26)\ge(26x)/(26) \\ 0\ge x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lyl393k1m9dzflhukc8puw2o0xgjsk8ab6.png)