First we need to find the slope of line m.
The slope of a line is:
![\begin{gathered} P_1=(x_1,y_1),P_2=(x_2,y_2)_{} \\ m=((y_2-y_1))/((x_2-x_1)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aw5ozjy4zhtyoii5szq8n20pb2y1p9bke7.png)
For line m we know P1=(-6,-5) and P2=(-4, 1), so the slope of m is:
![\begin{gathered} m=((1-(-6)))/((-4-(-5))) \\ m=(1+6)/(-4+5)=(7)/(1)=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/aq3ed8x6hl6arvi5qnkyyo27lvm4ajto79.png)
Now, if two lines are perpendicular the slopes satisfy the following equation:
![m_2=-(1)/(m_1)](https://img.qammunity.org/2023/formulas/mathematics/college/famfci9sb6car80iseo3b973mc71ztg8tq.png)
The slope of line l is:
![\begin{gathered} We\text{ call m2 the slope of line l and m1 the slope of line m:} \\ m_2=-(1)/(m_1)=-(1)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5fylxc6yww45s5zsr3hg5eyykiah33nfxm.png)
Finally, the line l pass througth point (6, 4), so the equation is:
![\begin{gathered} y=m_2x+b \\ 4=-(1)/(7)\cdot6+b_{} \\ b=4+(6)/(7)=(4\cdot7+6)/(7) \\ b=(28+6)/(7) \\ b=(34)/(7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/93y7bte408mml3fzd321qe20396jzcm3yy.png)
So, teh equation of line l is:
![y=-(1)/(7)x+(34)/(7)](https://img.qammunity.org/2023/formulas/mathematics/college/6ydp3ced8iqn9781y87wprn64nowwjr0jm.png)