First, let's calculate the horizontal and vertical components of the wind speed (W) and the airplane speed (A), knowing that south is a bearing of 270° and northeast is a bearing of 45°:
![\begin{gathered} W_x=W\cos45°\\ \\ W_x=50\cdot0.707\\ \\ W_x=35.35\\ \\ \\ \\ W_y=W\sin45°\\ \\ W_y=50\cdot0.707\\ \\ W_y=35.35 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q0fvv76e2dikvw09rlyeaqtl7cbr1lpwbu.png)
![\begin{gathered} A_x=A\cos270°\\ \\ A_x=540\cdot0\\ \\ A_x=0\\ \\ \\ \\ A_y=A\sin270°\\ \\ A_y=540\cdot(-1)\\ \\ A_y=-540 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3vus2iybyirbexz7kfy3xa8dexq98oap8r.png)
Now, let's add the components of the same direction:
![\begin{gathered} V_x=W_x+A_x=35.35+0=35.35\\ \\ V_y=W_y+A_y=35.35-540=-504.65 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3lvl6bene30ii278g3ohy6jtucfo8p5joa.png)
To find the resultant bearing (theta), we can use the formula below:
![\begin{gathered} \theta=\tan^(-1)((V_y)/(V_x))\\ \\ \theta=\tan^(-1)((-504.65)/(35.35))\\ \\ \theta=-86° \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vblil4g1884jcyipvse3ihju5vl642ip3r.png)
The angle -86° is equivalent to -86 + 360 = 274°.
Therefore the correct option is b.