166k views
4 votes
For questions 3 – 5, an airplane is heading south at an airspeed of 540 km/hr, but there is a wind blowing from the northeast at 50 km/hr.What is the plane’s bearing with the wind?Select one:a.94⁰b.274⁰c.184⁰d.176⁰

User KdotJPG
by
3.4k points

1 Answer

3 votes

First, let's calculate the horizontal and vertical components of the wind speed (W) and the airplane speed (A), knowing that south is a bearing of 270° and northeast is a bearing of 45°:


\begin{gathered} W_x=W\cos45°\\ \\ W_x=50\cdot0.707\\ \\ W_x=35.35\\ \\ \\ \\ W_y=W\sin45°\\ \\ W_y=50\cdot0.707\\ \\ W_y=35.35 \end{gathered}
\begin{gathered} A_x=A\cos270°\\ \\ A_x=540\cdot0\\ \\ A_x=0\\ \\ \\ \\ A_y=A\sin270°\\ \\ A_y=540\cdot(-1)\\ \\ A_y=-540 \end{gathered}

Now, let's add the components of the same direction:


\begin{gathered} V_x=W_x+A_x=35.35+0=35.35\\ \\ V_y=W_y+A_y=35.35-540=-504.65 \end{gathered}

To find the resultant bearing (theta), we can use the formula below:


\begin{gathered} \theta=\tan^(-1)((V_y)/(V_x))\\ \\ \theta=\tan^(-1)((-504.65)/(35.35))\\ \\ \theta=-86° \end{gathered}

The angle -86° is equivalent to -86 + 360 = 274°.

Therefore the correct option is b.

User Lars Knickrehm
by
3.6k points