Answer:
m∠2 = 90°
m∠3 = 35°
m∠4 = 35°
m∠5 = 90°
m∠6 = 55°
Explanation:
A perpendicular bisector is a line that intersects another line segment at 90°, dividing it into two equal parts.
If AD is a perpendicular bisector then:
⇒ m∠2 = m∠5 = 90°
An isosceles triangle has two legs of equal length.
Therefore, as AC = AB then AB is the angle bisector of ∠CAB.
Given m∠CAB = 70°:
⇒ m∠3 = m∠4 = 70° ÷ 2 = 35°
The interior angles of a triangle sum to 180°.
⇒ m∠4 + m∠5 + m∠6 = 180°
⇒ 35° + 90° + m∠6 = 180°
⇒ 125° + m∠6 = 180°
⇒ m∠6 = 180° - 125°
⇒ m∠6 = 55°