A) The given function is,
![f(x)=e^x](https://img.qammunity.org/2023/formulas/mathematics/college/fdr0j2acoqx0pvvufsclpiwebh7uude166.png)
Its derivative will be,
![f^(\prime)(x)=e^x](https://img.qammunity.org/2023/formulas/mathematics/college/o9ptutsh88f4ffgnagp853v7k8a4j6gdv0.png)
The graph of the derivative can be drawn as,
Thus, option (G) is correct for (A).
(B).
The given function is,
![\begin{gathered} f(x)=\ln \lvert x\rvert \\ f^(\prime)(x)=(1)/(x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rj7hn60e38wmb3if0mguqnb6bs6301r82u.png)
The graph of the derivative (1/x) can be drawn as,
Thus, option (F) is correct for (B).
(C) The given function is,
![\begin{gathered} f(x)=ln\lvert\sec x\rvert \\ f^(\prime)(x)=(\sec x\tan x)/(\sec x)=\tan x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hhfqrluby5mbm5wdtzbflh3qzfz7hh3hzt.png)
The graph of the derivative i.e the tanx can be drawn as,
Thus, the option (E) is correct for (C).
(D) The given function is,
![\begin{gathered} f(x)=\ln \lvert\sec x+\tan x\rvert \\ f^(\prime)(x)=(1)/(\sec x+\tan x)*(\sec x\tan x+\sec ^2x) \\ f^(\prime)(x)=\sec x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hyjpllwhy610mhi50t76k609a36mv7oac7.png)
The derivative of the function is secx whose graph can be drawn as,
Thus, option (H) is the correct option for (D).