Notice that:
![\begin{gathered} 1=2*(1)/(2), \\ (1)/(2)=1*(1)/(2). \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/plxyzobohriklfajk0jbnr0qf1f6wlqoia.png)
Therefore, the common ratio is:
![(1)/(2).](https://img.qammunity.org/2023/formulas/mathematics/college/b8rivcsxx4tkdvs6jcxhniep63tbakgv51.png)
The mth term of the sequence has the general form:
![a_m=2((1)/(2))^(m-1).^](https://img.qammunity.org/2023/formulas/mathematics/high-school/xkmvaqt0y8vklmhonubg7un9bm5ukmugyd.png)
Setting
![a_m=(1)/(1024),](https://img.qammunity.org/2023/formulas/mathematics/high-school/5c2n8298zl7n9ghj05s0dcpgtwp04rr93q.png)
we get:
![(1)/(1024)=2((1)/(2))^(m-1).](https://img.qammunity.org/2023/formulas/mathematics/high-school/m2d9i0ge7jzh5eqrwa5aaephbwssowkp5v.png)
Solving the above equation for m, we get:
![\begin{gathered} (1)/(2*1024)=(1)/(2^(m-1)), \\ 2048=2^(m-1), \\ log_2(2048)=m-1(log_22), \\ 11=m-1, \\ m=11+1, \\ m=12. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mwdergdpa0a2gzt5jct6mq6zmzeff0j8j2.png)
Finally, we get that there are
![12](https://img.qammunity.org/2023/formulas/mathematics/college/qu7n5s8f653542zjpxxfivilyqfkh2a2e5.png)
terms in the finite geometric sequence.
Answer:
First blank:
![(1)/(2),](https://img.qammunity.org/2023/formulas/mathematics/high-school/prof60n5yf7p5nmwnuya3w38sqextkd54f.png)
Second blank:
![12.](https://img.qammunity.org/2023/formulas/mathematics/high-school/rr7opidu0dl90g6ewbktm94kzseq0it93v.png)