Given:
There are given that the 8 toppings on the menu.
Step-by-step explanation:
According to the question:
We need to find a number of ways that choose 2 pizzas with toppings from the menu of 8 toppings.
Then,
To find the number of ways, we need to use the combination formula:
So,
From the combination of the formula:
![nC_r=(n!)/(r!(n-r)!)](https://img.qammunity.org/2023/formulas/mathematics/college/5hm7rglqgm25fa15d2rko8iodp2eumgzdx.png)
Where,
![\begin{gathered} n=8 \\ r=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tqroh5nholtis795oppbag9lyg55s16q3i.png)
Then,
Put both values into the given formula:
![\begin{gathered} nC_(r)=(n!)/(r!(n-r)!) \\ 8C_2=(8!)/(2!(8-2)!) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nmw2qm2ybselyjiu10j06lttdskh338d37.png)
Then,
![\begin{gathered} 8C_(2)=(8!)/(2!(8-2)!) \\ =(8!)/(2!(6!)) \\ =(8*7**6!)/(2!*6!) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5z7p63xcxlrureew0ch91qnsqwirdnbn2b.png)
Then,
![\begin{gathered} \frac{8*7\operatorname{*}6!}{2!*6!}=(8*7)/(2) \\ =4*7 \\ =28 \end{gathered}]()
Final answer:
Hence, the number of ways is 28.