Given the definition of absolute value:
![\begin{gathered} |a|=\begin{cases}a,a\ge0 \\ -a,a<0\end{cases} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/79dz8smajt1aftwotf4dmo09sxz1oajzik.png)
in this case we have the following:
![|5-2x|-11=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/ytyx1x5trtptfan0jpzdwncn3nqxhf6nij.png)
we will have two cases from this equation.
The first case is when 5-2x>=0, then we have the following:
![\begin{gathered} 5-2x-11=0 \\ \Rightarrow-2x-6=0 \\ \Rightarrow-2x=6 \\ \Rightarrow x=(6)/(-2)=-3 \\ x=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9wo1l0z34trg1n3ywnus1l391ssn8jzl3m.png)
next, we will consider the cas when 5-2x < 0, then we would have the following:
![\begin{gathered} -(5-2x)-11=0 \\ \Rightarrow-5+2x-11=0 \\ \Rightarrow2x-16=0 \\ \Rightarrow2x=16 \\ \Rightarrow x=(16)/(2)=8 \\ x=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ywg6kr5msb8et2u3wc8cora6nvof5vtwt6.png)
therefore, the two x-values that are solutions to the equation are x=-3 and x=8