497,802 views
43 votes
43 votes
A block of mass m = 3.0 kg is pushed a distance d = 2.0 m along a frictionless horizontal table by

a constant applied force of magnitude F= 20.0 N directed at an angle 0= 30.0° below the horizontal
as shown in Figure. Determine the work done by (a) the applied force, (b) the normal force exerted
by the table, and (d) the net force on the block.

User Matteo Rubini
by
3.3k points

1 Answer

25 votes
25 votes

Step-by-step explanation:

We apply the definition of work by a constant force in the first three parts, but then in the fourth part we add up the answers. The total (net) work is the sum of the amounts of work done by the individual forces, and is the work done by the total (net) force. This identification is not represented by an equation in the chapter text, but is something you know by thinking about it, without relying on an equation in a list.

The definition of work by a constant force is W=FΔrcosθ.

(a) The applied force does work given by

W=FΔrcosθ=(16.0N)(2.20m)cos25.00=31.9J

(b), (c) The normal force and the weight are both at 900 to the displacement in any time interval. Both do 0 work.

(d) ∑W=31.9J+0+0=31.9J

User Dave Salomon
by
3.1k points