121k views
5 votes
A54С3BFind sin(ZABC + 60°).

User Nisar
by
3.8k points

1 Answer

5 votes

The given expression is


\sin (\angle ABC+\mathring{60})

At first, we will use this rule to solve the question


\sin (A+B)=\sin A\cos B+\cos A\sin B

By using this rule with the given expression, then


\sin (\angle ABC+\mathring{60})=\sin \angle ABC\cos 60+\cos \angle ABC\sin 60

From the given triangle


\begin{gathered} \sin \angle ABC=(AC)/(AB) \\ \sin \angle ABC=(4)/(5) \\ \cos \angle ABC=(BC)/(AB) \\ \cos \angle ABC=(3)/(5) \end{gathered}

Since angle 60 is a special angle then


\begin{gathered} \sin 60=\frac{\sqrt[]{3}}{2} \\ \cos 60=(1)/(2) \end{gathered}

Let us substitute these values in the rule above


\sin (\angle ABC+60)=((4)/(5))((1)/(2))+((3)/(5))(\frac{\sqrt[]{3}}{2})_{}

Simplify the right side


\sin (\angle ABC+60)=(2)/(5)+(3)/(10)\sqrt[]{3}

The correct answer is B

User Nyx
by
4.2k points