The given expression is

At first, we will use this rule to solve the question

By using this rule with the given expression, then

From the given triangle

Since angle 60 is a special angle then
![\begin{gathered} \sin 60=\frac{\sqrt[]{3}}{2} \\ \cos 60=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cldjcm3ctc3a6zmoi5pqwv932g773dqe1z.png)
Let us substitute these values in the rule above
![\sin (\angle ABC+60)=((4)/(5))((1)/(2))+((3)/(5))(\frac{\sqrt[]{3}}{2})_{}](https://img.qammunity.org/2023/formulas/mathematics/college/npm9lltfj05i3xla5v4hv98krezv9y73n9.png)
Simplify the right side
![\sin (\angle ABC+60)=(2)/(5)+(3)/(10)\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/qgtxxkzp3sy2tyygrljmc16kg4krkze0yt.png)
The correct answer is B