147k views
5 votes
Find a set of parametric equations for y= 5x + 11, given the parameter t=2-x

User Seb
by
8.2k points

1 Answer

7 votes

Given the equation:


y=5x+11

Let's find a set of parametric equation for the given equation given the parameter:


t=2-x

From the parameter:

t = 2 - x

Rewrite the parameter for x.

Rearrange the parameter:


2-x=t

Subtract 2 from both sides:


\begin{gathered} 2-2-x=t-2 \\ \\ -x=t-2 \end{gathered}

Divide all terms by -1:


\begin{gathered} (-x)/(-1)=(t)/(-1)-(2)/(-1) \\ \\ x=-t+2 \\ \\ x=2-t \end{gathered}

Now, substitute (2 - t) for x in the given equation:


\begin{gathered} y=5x+11 \\ \\ y=5(2-t)+11 \end{gathered}

Simplify the equation using distributive property:


\begin{gathered} y=5(2)+5(-t)+11 \\ \\ y=10-5t+11 \\ \\ \text{ Collect like terms:} \\ y=-5t+10+11 \\ \\ y=-5t+21 \end{gathered}

Therefore, the set of parametric equations is:

• x = 2 - t

,

• y = -5t + 21

ANSWER:

• x = 2 - t

,

• y = -5t + 21

User ChrJantz
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories