From the problem, we have :
![\int -\frac{3}{\sqrt[]{64-9x^2}}dx](https://img.qammunity.org/2023/formulas/mathematics/high-school/p6zi9vwk3977jkedv54s5oz7ba3bxj7kz9.png)
We need to think of a square number that if we multiply it by 9, the result is 64.
That would be 64/9
![9*(64)/(9)=64](https://img.qammunity.org/2023/formulas/mathematics/high-school/ptug1ysqxpvj57m5odrxbuqomosz7865ho.png)
The square root of 64/9 is 8/3.
Let u = 3x/8
8u = 3x
x = 8u/3 (This value is the same as we've got above 8/3)
du = 3/8 dx
dx = 8/3 du
Subsitute x = 8u/3 and dx = 8/3 du
![\begin{gathered} \int -\frac{3}{\sqrt[]{64-9((8u)/(3))^2}}*(8)/(3)du \\ \Rightarrow\int -\frac{8}{\sqrt[]{64-9((64)/(9)u^2)}}du \\ \Rightarrow\int -\frac{8}{\sqrt[]{64-64u^2}}du \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6dblozf67gmcw0zpgl2cq3z5ojm8975qcv.png)
Extract the square root of 64 which is equal to 8.
![\begin{gathered} \Rightarrow\int -\frac{8}{\sqrt[]{64-64u^2}}du \\ \Rightarrow\int -\frac{8}{8\sqrt[]{1-u^2}}du \\ \Rightarrow\int -\frac{1}{\sqrt[]{1-u^2}}du \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/uwpzozao8yy4jqzw8a0bl4n9ml8mcs0p86.png)
Note that the identity :
![\int \frac{1}{\sqrt[]{1-u^2}}du=\sin ^(-1)(u)+C](https://img.qammunity.org/2023/formulas/mathematics/high-school/82166fbhyvplule7nm7n57eqzbnsh4ik3q.png)
It follows that :
![\int -\frac{1}{\sqrt[]{1-u^2}}du=-\sin ^(-1)(u)+C](https://img.qammunity.org/2023/formulas/mathematics/high-school/2cz5gq4onj7xwepeulkg8hdzdtavi8jutv.png)
Bring back u = 3x/8, the answer is :
![-\sin ^(-1)((3x)/(8))+C](https://img.qammunity.org/2023/formulas/mathematics/high-school/6172ecdyvpf9ody9s5fz03p3o0k2dhmoai.png)