Solution
- The formula for proportion confidence interval is given as:

- Thus, we can find the confidence interval as follows:
Question A:
![\begin{gathered} p=(58)/(396)=0.1\overline{46} \\ \\ n=396 \\ Z^*=1.96 \\ \\ CI=0.1\overline{46}\pm1.96\sqrt{\frac{0.1\overline{46}(1-0.1\overline{46}}{396}} \\ \\ CI=0.1\overline{46}\pm0.03462456 \\ \\ CI=[0.111640086359,0.181289206571] \\ \\ CI=[0.1116,0.1813]\text{ \lparen To 4 decimal places\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i8ddlmg8zu1kt6bu16ra2wv4u0zunnc14c.png)
Question B:
- If many groups of 396 randomly selected caterpillars are observed, about 95% will contain the true population proportion and about 5% will not contain the true population proportion