We need to find the line equation for the line passing through (-1,3) and (5,-5).
First, we need to find the slope using the slope formula:
![m=(y_2-y_1)/(x_2-x_1_)](https://img.qammunity.org/2023/formulas/mathematics/college/k5t4065l6pdnibi7bv2hicti759wq0n1o5.png)
Replace using P1(-1,3) and P2(5,-5).
Therefore:
![m=(-5-3)/(5-(-1))=(-8)/(6)=-(4)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/76rng98z9tilzhhd2mjf1z9d4caaxcb390.png)
Then, we need to find the line :
![y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/csobd57zth7rh9k4hz9amldzpq2owf0z4j.png)
Use m= -4/3 and P1(-1,3). Then:
![\begin{gathered} y-3=-(4)/(3)(x-(-1)) \\ y-3=-(4)/(3)x-(4)/(3) \\ y=-(4)/(3)x-(4)/(3)+3 \\ y=-(4)/(3)x+(5)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xz0y4k7iw1paw7twrpyt0ncdfh9vgbf6dy.png)
Hence, the line equation is:
![y=-(4)/(3)x+(5)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/241q79njm20n3hjxql70xouowbqiob0ukx.png)