The diagonals of a parallelogram intersect at their midpoint. Then:
![CT=TE](https://img.qammunity.org/2023/formulas/mathematics/college/q18o4axx6idnjndjthm91iazo1hn1in9v0.png)
Substitute the expressions for each segment and solve for x:
![\begin{gathered} \Rightarrow x+3=2x-6 \\ \Rightarrow x-2x=-6-3 \\ \Rightarrow-x=-9 \\ \Rightarrow x=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kr1iebh6yr57dn7uqpgfa77ybrpiqa1t0h.png)
On the other hand, CE=CT+TE. Substitute the expressions for each segment and the value of x to find the length of CE:
![\begin{gathered} CE=CT+TE \\ =x+3+2x-6 \\ =3x-3 \\ =3(9)-3 \\ =27-3 \\ =24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z9drf0nlcj16kj4vohxgsm7lgb23yuj3r2.png)
Therefore, the length of the segment CE is:
![24](https://img.qammunity.org/2023/formulas/mathematics/college/uiwb9ojwsi8qi92cp29dk27j5g522vwuaj.png)