Given the expression:
![4\sqrt[]{-20}](https://img.qammunity.org/2023/formulas/mathematics/high-school/3pjq5ops3xfec0rl11qnumaymzdgklr4v7.png)
To simplify the expression you have to use complex numbers.
Let "i" be equal to the square root of -1:
![i=\sqrt[]{-1}](https://img.qammunity.org/2023/formulas/mathematics/college/prwnjpkamd054mvqxx3wkz9peqbswm21lz.png)
Then, you can rewrite the expression as follows:
![\begin{gathered} 4\sqrt[]{20\cdot(-1)} \\ 4\sqrt[]{20}\cdot\sqrt[]{-1} \\ 4i\sqrt[]{20} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lcf9xqp5zagv0uhi3tr5p54shnihg20h5n.png)
Now that you have the square root of a positive number you can simplify it:
First, factor 20, you can write it as the product between 4 and 5:
![4i\cdot\sqrt[]{4\cdot5}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ujhgoo3umqwagdj0our7kdbx8vwdqra1sk.png)
Distribute the square root and simplify:
![\begin{gathered} 4i\cdot\sqrt[]{4}\cdot\sqrt[]{5} \\ 4i\cdot2\cdot\sqrt[]{5} \\ (4\cdot2)i\sqrt[]{5} \\ 8i\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/fhs1lu6i8ezhq62qwb1q0bgy8n15qnabd0.png)
The simplified expression is:
![8i\sqrt[]{5}](https://img.qammunity.org/2023/formulas/mathematics/high-school/56tv2o5iadxc4mwi6p4r9r8flixmctnri5.png)