Given the equation:
![\sin (3x)=\sqrt[]{3}\cos (3x)](https://img.qammunity.org/2023/formulas/mathematics/college/kyzuwbosayp5ap9ltzy198aov706kzn8ru.png)
Let's find all possible solutions over the interval:

Let first simplify the equation.
Divide both sides by cos(3x):
![\begin{gathered} (\sin3x)/(\cos3x)=\frac{\sqrt[]{3}\cos (3x)}{\cos 3x} \\ \\ (\sin 3x)/(\cos 3x)=\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wjq5a1129ksuad9llvvf2c7r75bt37m5pt.png)
Apply the trigonometric identity:
sinx/cosx = tanx
We have:
![\tan 3x=\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/cj218bvhnmf57i635xydfy3lgkk5h5a623.png)
Take the inverse tangent of both sides:
![\begin{gathered} 3x=\tan ^(-1)(\sqrt[]{3}) \\ \\ 3x=(\pi)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rfiy3aocteke0ima95lg5fgo2ltcer60cd.png)
Divide both sides by 3:

The tangent function is positive in the first and third quadrant. Let's find the second solution by adding π to the reference angle:

Let's find the period of tan(3x):

Since the period is π/3, the solution values will repeat every π/3 in both directions.
We have:

When n = 1:

When n = 2:

WHen n = 3:

When n = 4:

When n = 5:

Therefore, the solutions are:

ANSWER:
