61.9k views
4 votes
How to solve these Trigonometry functions without using chain rule for any of them. Problem 3.

How to solve these Trigonometry functions without using chain rule for any of them-example-1

1 Answer

6 votes

3.- To answer this question, we will use the quotient rule:


((f(x))/(g(x)))^(\prime)=\frac{g(x)f^(\prime)(x)-f^{}(x)g^(\prime)(x)}{(g(x))^2}.

Before applying the rule, we will determine each derivative to avoid confusion:


\begin{gathered} (\cos x)^(\prime)=-\sin x, \\ (1+\sin x)^(\prime)=(1)^(\prime)+(\sin x)^(\prime)=0+\cos x=\cos x. \end{gathered}

Now, we substitute the above results in the quotient rule:


f^(\prime)(x)=((1+\sin x)(-\sin x)-(\cos x)(\cos x))/((1+\sin x)^2).

Simplifying the above result, we get:


f^(\prime)(x)=(-\sin x-\sin ^2x-\cos ^2x)/((1+\sin x)^2).

Recall that:


\sin ^2x+cos^2x=1.

Therefore:


f^(\prime)(x)=(-\sin x-1)/((1+\sin x)^2)=(-(\sin x+1))/((1+\sin x)^2)=-(1)/(1+\sin x).

Answer:


f^(\prime)(x)=-(1)/(1+\sin x).

User Cquptzzq
by
4.1k points