Let's use the variable x to represent the amount of $6 candy bought and y to represent the amount of $9 candy bought.
If the final mixture has 15 pounds, we have the equation:
![x+y=15](https://img.qammunity.org/2023/formulas/mathematics/college/sixxorckiqwr7gu5ehufuwly78x3h2wguj.png)
Then, the final price is $7 per pound, so we can write the equation:
![x\cdot6+y\cdot9=15\cdot7](https://img.qammunity.org/2023/formulas/mathematics/college/zw03exmt7qewxs8iuh5hdly8b0oslz1w3h.png)
Solving this system, we have:
![\begin{gathered} \begin{cases}x+y=15 \\ 6x+9y=105\end{cases} \\ \begin{cases}-6x-6y=-90 \\ 6x+9y=105\end{cases} \\ -6x-6y+(6x+9y)=-90+105 \\ 3y=15 \\ y=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8uc6pgfk89gkxk1l4xr2jtitz9hyvb6wpd.png)
So the number of pounds of the expensive candy if 5, therefore the correct option is A.