197k views
3 votes
The terminal side of an < θ intersects the Unit Circle at point P=(5/6, -√11/6)

The terminal side of an < θ intersects the Unit Circle at point P=(5/6, -√11/6)-example-1

1 Answer

0 votes

Given that the terminal side of an <θ intersects the unit circle at the point


P((5)/(6),\frac{-\sqrt[]{11}}{6})

From the given point P:


\begin{gathered} x=(5)/(6) \\ y=\frac{-\sqrt[]{11}}{6} \\ \text{ s}ince,\text{ x is positive and y is negative, the angle lies in the 4th quadrant} \end{gathered}
\begin{gathered} \tan \theta=\frac{\text{ opposite}}{\text{Adjacent}}=(y)/(x) \\ \tan \theta=\frac{\frac{-\sqrt[]{11}}{6}}{(5)/(6)}=\frac{-\sqrt[]{11}}{5} \\ \tan \theta=-0.6633 \\ \theta=326.44^0 \end{gathered}

The terminal side of an < θ intersects the Unit Circle at point P=(5/6, -√11/6)-example-1
User Gulshan S
by
4.7k points