229k views
1 vote
Let 0 be an angle in quadrant II such that cos 0

Let 0 be an angle in quadrant II such that cos 0-example-1

1 Answer

4 votes

we have that

cos(theta)=-5/6

step 1

Find out sin(theta)

Remember that


\sin ^2(\theta)+\cos ^2(\theta)=1

substitute given value


\sin ^2(\theta)+(-(5)/(6))^2=1
\sin ^2(\theta)^{}=1-(25)/(36)
\sin ^{}(\theta)^{}=\frac{\sqrt[]{11}}{6}

The value of sin(theta) is positive because the angle theta lies on the II quadrant

step 2

Find out csc(theta)


\csc (\theta)=(1)/(\sin (\theta))
\csc (\theta)=\frac{6}{\sqrt[]{11}}

simplify


\csc (\theta)=\frac{6\sqrt[]{11}}{11}

step 3

Find out tan(\theta)


\tan (\theta)=(\sin (\theta))/(\cos (\theta))
\tan (\theta)=-\frac{\sqrt[]{11}}{5}

User AnkDasCo
by
4.0k points