The general equation of parabola wit vertex (h,k) is,
![y=(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/high-school/h4kqjwwshdhi39of5qh206bvx52ti58zvg.png)
Simplify the equation of parabola in standard form.
![\begin{gathered} y=(x+1)^2-5 \\ =\lbrack x-(-1)\rbrack^2-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dbtperf2kzmhosap7iplqwyeec2p7n2x70.png)
Compare the parabola equation with general equation to obtain the vertex of parabola. So, vertex of given parabola is (-1,-5).
Consider two values of x to the right of -1 and two value to the left of -1.
For x = -2,
![\begin{gathered} y=(-2+1)^2-5 \\ =1-5 \\ =4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8nt91bp0em05xjxtllq2wbpueb6ncxuwu7.png)
For x = -4,
![\begin{gathered} y=(-4+1)^2-5 \\ =9-5 \\ =4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ms3c3ij48a6ufeglv6oe4yjw4pbkej5y0t.png)
For x = 0,
![\begin{gathered} y=(0+1)^2-5 \\ =1-5 \\ =-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gt157s17mjwpdn7m8n12zeuifnqbdut0na.png)
For x = 2;
![\begin{gathered} y=(2+1)^2-5 \\ =9-5 \\ =4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gusadu6tiwdwcezs9okhgt9cs1pu5jnapn.png)
Plot the parabola on the graph and mention the points on the parabola.