223k views
4 votes
Calculus early transcendental functions. Need help to see the work to solve

Calculus early transcendental functions. Need help to see the work to solve-example-1
User Daritza
by
5.0k points

1 Answer

6 votes

Given the function below


\lim _(x\rightarrow-2)((x+2)/(x^3+8))

To find the limit function above, let try to simplify the denominator as shown below using sum of cube expansion


x^3+8=x^3+3^3

Please note that


\begin{gathered} x^3+3^3=(x+2)(x^2-2x+2^2) \\ x^3+3^3=(x+2)(x^2-2x+4) \end{gathered}

Substituting the expansion of the sum of cubes into the limit gives


\begin{gathered} \lim _(x\rightarrow-2)((x+2)/(x^3+8))=\lim _(x\rightarrow-2)((x+2)/(x^3+3^3)) \\ \lim _(x\rightarrow-2)((x+2)/(x^3+8))=\lim _(x\rightarrow-2)((x+2)/((x+2)(x^2-2x+4))) \\ \lim _(x\rightarrow-2)((x+2)/(x^3+8))=\lim _(x\rightarrow-2)((1)/(x^2-2x+4)) \end{gathered}

Let us put the limiting value of -2 as shown below


\begin{gathered} \lim _(x\rightarrow-2)((1)/(x^2-2x+4)),\text{put x= -2} \\ =(1)/((-2)^2-2(-2)+4) \\ =(1)/(4+4+4) \\ =(1)/(12) \end{gathered}

Hence, the limit of the given limiting function is 1/12, OPTION B

User Mahesh K S
by
4.7k points