Rational numbers are numbers that are expressed as the ratio of two integers, where the denominator should not be equal to zero.
Lets check for option A
![(3\sqrt[]{5})\text{ + (2}\sqrt[]{5}\text{) = 5}\sqrt[]{5}](https://img.qammunity.org/2023/formulas/mathematics/college/p7disypapvwps159fjnzx027qr0kyj541t.png)
Hence is not a rational number
Let's check for option B
![\begin{gathered} (3\sqrt[]{5})\text{ - (2}\sqrt[]{5}\text{) = 1}\sqrt[]{5} \\ \Rightarrow\sqrt[]{5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hjjqx7vbesc2d3caxu03pf65mu48s5tiyd.png)
option B is not a rational number
Let's check for option C
![\begin{gathered} (3\sqrt[]{5})\text{ x (2}\sqrt[]{5}\text{) = 3 x 2 x 5} \\ \Rightarrow\text{ 6 x 5 } \\ \Rightarrow\text{ 30} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/armzakkphj70p38ol4ncujr56bu9aomv2y.png)
Option C is a rational number
Let's check for option D
![\frac{(3\sqrt[]{5})}{(2\sqrt[]{5})}=(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/2plig00b0q3178lvaojdaxp2vyvpi9kyff.png)
Hence option D is a rational number
Let's check for option E
![(2\sqrt[]{5})\text{ -(3}\sqrt[]{5}\text{) = -1}\sqrt[]{5}](https://img.qammunity.org/2023/formulas/mathematics/college/8ht89en27amksp1dsieprsug73l2p6oe0d.png)
Option E is not a rational number
Option F
![\frac{2\sqrt[]{5}}{3\sqrt[]{5}}\text{ = }(2)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/s6d2pf25bbqmvhrawqr03h17299sl1jkbl.png)
Option F is a rational number