Given data:
* The value of the potential energy given is,
![U=35\text{ J}](https://img.qammunity.org/2023/formulas/physics/college/74h57zqrhtykp0lnh5rn7dmrn2tb2hlfxi.png)
* The spring constant of the spring is,
![k=82\text{ N/m}](https://img.qammunity.org/2023/formulas/physics/college/wyw9ba6fyk09wc323nwzx7xp5ylvuqswuz.png)
Solution:
The potential energy in terms of the compressed distance of the spring is,
![U=(1)/(2)kx^2](https://img.qammunity.org/2023/formulas/physics/college/t4wocinxpky5ozyb8b9ux7fjayymh0dqoz.png)
where x is the distance compressed,
Substituting the known values,
![\begin{gathered} 35=(1)/(2)*82* x^2 \\ x^2=(35*2)/(82) \\ x^2=0.854 \\ x=0.92\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4gsmdpgnkjb276zm2usla60g2ptvh87mgf.png)
Thus, the spring is compressed to 0.92 m.