We will have that the area of the triangle is the following:
*First: We determine the missing value for the sides and angle:
Angle Y:
![Y=180-67-50\Rightarrow Y=63](https://img.qammunity.org/2023/formulas/mathematics/college/fpbjo2g8w0130uusrvwybnsjb6u2czu8ph.png)
Side y:
![(y)/(\sin(63))=(44)/(\sin(50))\Rightarrow y=(44\sin(63))/(\sin(50))](https://img.qammunity.org/2023/formulas/mathematics/college/ojquwea0hef1hxslcbr44em7sm4fkg6smw.png)
![\Rightarrow y=51.17756211\ldots](https://img.qammunity.org/2023/formulas/mathematics/college/yrnxbnnktndkukd462ry4w27h6hucdempg.png)
Side x:
![(x)/(\sin(67))=(44)/(\sin(50))\Rightarrow x=(44\sin(67))/(\sin(50))](https://img.qammunity.org/2023/formulas/mathematics/college/hnsnu7xlvhytdw6rn6shur78qv0xykgcs3.png)
![\Rightarrow x=52.8718848\ldots](https://img.qammunity.org/2023/formulas/mathematics/college/hvo93tefk0hal03gpjprh1e6063dvib94g.png)
*Second: We determine the area of the triangle as follows [Heron's formula]:
![s=(44+(44\sin(63))/(\sin(50))+(44\sin(67))/(\sin(50)))/(2)\Rightarrow s\approx74.02472346](https://img.qammunity.org/2023/formulas/mathematics/college/112ibdftjig8u1n7evb5pd5o0hqqgr4x45.png)
Then:
![A=\sqrt[]{(74.02472346)(74.02472346-44)(74.02472346-(44\sin(63))/(\sin(50)))(74.02472346-(44\sin (67))/(\sin (50)))}](https://img.qammunity.org/2023/formulas/mathematics/college/s1dgcwy590s9x3t0yj4uxb0j983z9ox1xr.png)
![\Rightarrow A\approx1874.8](https://img.qammunity.org/2023/formulas/mathematics/college/h3fqoxhfvm0vstl5kbx48jemsuqiv18aln.png)
So, the area of the triangle is approximately 1874.8 mm^2.