ANSWER
![30x^5\sqrt[]{-7x}](https://img.qammunity.org/2023/formulas/mathematics/college/6a185amsz19p76pi6rcz0489kp32ukce8i.png)
Step-by-step explanation
We want to simplify the radical given by using a factor tree.
To do this, we have to draw the factor tree for the numeric term inside the radicand:
![63](https://img.qammunity.org/2023/formulas/mathematics/college/8itc71zzugsvwo2msmzxrgplcee4a5f48r.png)
The factor tree is:
From the tree, we see that 63 can be rewritten as:
![\begin{gathered} 63=3\cdot3\cdot7 \\ 63=3^2\cdot7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ex4rrx02o5tb2rwk49sbfhy0vovyv97h69.png)
For the variable, we can simplify it as follows:
![\begin{gathered} x^(11)=x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x \\ \Rightarrow x^(11)=x^5\cdot x^5\cdot x \\ \Rightarrow x^(11)=(x^5)^2\cdot x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dfn9vyz47d7jkc0fh0w1i1aimst16pgekh.png)
Hence, the simplified radical form of the given term is:
![\begin{gathered} 10\sqrt[]{-(3)^2\cdot7\cdot(x^5)^2\cdot x} \\ 10\cdot3\cdot x^5\cdot\sqrt[]{-7\cdot x} \\ \Rightarrow30x^5\sqrt[]{-7x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vo6eb9408mg7x2646f33j6lqzgl9l63gtd.png)
That is the answer.