Let the production matrix = X
![X\text{ = }(I-A)^(-1)D](https://img.qammunity.org/2023/formulas/mathematics/college/174gu7h42ycygycmkbz0kxbmoji48pqa9v.png)
Next
![\begin{gathered} A\text{ = }\begin{bmatrix}{0.1} & {} & {0.2} \\ {} & {} & {} \\ {0.45} & {} & {0.6}\end{bmatrix} \\ D\text{ = }\begin{bmatrix}{2} & {} & {} \\ {} & {} & {} \\ {4} & & \end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kpg0t9le9kupdqj4dghva23c8pwkg5elqx.png)
![I\text{ = }\begin{bmatrix}{1} & {} & {0} \\ {} & {} & {} \\ {0} & {} & {1}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/2uhv3lgw9uo9qkwxfqs2p5f08681q1y99r.png)
Next, evaluate X
![\begin{gathered} I\text{ - A = }\begin{bmatrix}{1} & {} & {0} \\ {} & {} & {} \\ {0} & {} & {1}\end{bmatrix}\text{ - }\begin{bmatrix}{0.1} & {} & {0.2} \\ {} & {} & {} \\ {0.45} & {} & {0.6}\end{bmatrix} \\ =\text{ }\begin{bmatrix}{0.9} & {} & {-0.2} \\ {} & {} & {} \\ {-0.45} & {} & {0.4}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vyoot00dlgfrphv2xtn4ljevp81vppyq9b.png)
Next, you find the inverse of I - A which is adjount of I - A divided by it determinant.
Determinant of (I - A) = 0.9 x 0.4 - (-0.45 x -0.2) = 0.36 - 0.09 = 0.27
Adjount of (I - A) is the transpose of it co-factor
![\begin{gathered} Co-\text{factor of (I - A) = }\begin{bmatrix}{0.4} & {} & {0.45} \\ {} & {} & {} \\ {0.2} & {} & {0.9}\end{bmatrix} \\ \text{Adjount = }\begin{bmatrix}{0.4} & {} & {0.2} \\ {} & {} & {} \\ {0.45} & {} & {0.9}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sfrghpo7er23qahb56kwqovbmagkljfkzc.png)
Therefore
![\begin{gathered} (I-A)^(-1)\text{ = }(1)/(0.27)\begin{bmatrix}{0.4} & {} & {0.2} \\ {} & {} & {} \\ {0.45} & {} & {0.9}\end{bmatrix} \\ =\text{ }\begin{bmatrix}{1.48} & {} & {0.74} \\ {} & {} & {} \\ {1.67} & {} & {3.33}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7v9qrc8z5odx2cgwtaaxxaoeo3xr96voii.png)
Now, we find x
![\begin{gathered} X=(I-A)^(-1)D \\ =\text{ }\begin{bmatrix}{1.48} & {} & {0.74} \\ {} & {} & {} \\ {1.67} & {} & {3.33}\end{bmatrix}\text{ X }\begin{bmatrix}{} & {2} & {} \\ {} & {} & {} \\ {} & {4} & {}\end{bmatrix} \\ X=\text{ }\begin{bmatrix}{} & {5.92} & {} \\ {} & {} & {} \\ {} & {16.66} & {}\end{bmatrix} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tsxcz16cgczh6o882fcevnvl445ebanxhp.png)
![\text{The production matrix = }\begin{bmatrix}{} & {5.92} & {} \\ {} & {} & {} \\ {} & {16.66} & {}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/kvgke95wd0ug9tvhv0kojkm4be8t3a0paw.png)