Let's recall the general formof the equation of a line in point-slope form:
where x1 and y1 are the coordinates of the point (x1, y1) the line foes through, and m is the slope.
So,we need to start by finding the slope os a segment that joins the points they gave us: (3 , -8) and (-2, 5)
So we use the formula for slope:
which in our case becomes:
slope = (5 -(-8)) / (-2-3) = 13/(-5) = - 13/5
Now we have the equation of the line in point-slope form by using for example point (-2, 5) as our selected point:
Therefore the equation in point-slope form is:
y - 5 = - (13/5) ( x + 2 )
And now, we can write this equation in slope-intercept form by simple solving for y and performing all implicit operations on the right:
Therefore, the equation in slope-intercept becomes:
y = - (13/5) x - (1/5)