Solution:
The permutation formula is expressed as
![\begin{gathered} P^n_r=(n!)/((n-r)!) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g93l97r31jpbyb5t70rinqy3t5ud79wwvi.png)
The combination formula is expressed as
![\begin{gathered} C^n_r=(n!)/((n-r)!r!) \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q1jjjhdkln2ekvzpef1p06ht1qfj9f6t82.png)
where
![\begin{gathered} n\Rightarrow total\text{ number of objects} \\ r\Rightarrow number\text{ of object selected} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iif9r38dqypfjyjc60fsvl1r3df6vdbou7.png)
Given that 6 objects are taken at a time from 8, this implies that
![\begin{gathered} n=8 \\ r=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i2otm6d3yvocqiggjwf6c7rkqci6u114gg.png)
Thus,
Number of permuations:
![\begin{gathered} P^8_6=(8!)/((8-6)!) \\ =(8!)/(2!)=(8*7*6*5*4*3*2!)/(2!) \\ 2!\text{ cancel out, thus we have} \\ \begin{equation*} 8*7*6*5*4*3 \end{equation*} \\ \Rightarrow P_6^8=20160 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1y9cius15zeewu0b5hsff2eqlvdc5ag20u.png)
Number of combinations:
![\begin{gathered} C^8_6=(8!)/((8-6)!6!) \\ =(8!)/(2!*6!)=(8*7*6!)/(6!*2*1) \\ 6!\text{ cancel out, thus we have} \\ (8*7)/(2) \\ \Rightarrow C_6^8=28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pxwgr1lprjajwpauij6mqhj3a22dc8947i.png)
Hence, there are 28 combinations and 20160 permutations.