Given data:
The height of the building is h=12 m.
The pressure on the ground is
![P_G=330\text{ kPa}](https://img.qammunity.org/2023/formulas/physics/high-school/9kjyqavrl394ui5hx2acoit871oebjawa3.png)
The water pressure at the ground level can be given as,
![P_T=p_G+\rho gh](https://img.qammunity.org/2023/formulas/physics/high-school/m1fl8y4v4oe8np7hg7c4v5hidgqy2io205.png)
Here,
![\rho](https://img.qammunity.org/2023/formulas/mathematics/college/5a4uo7zcvl2v98bj17ps79gmbah1o48gwc.png)
is the density of water whose value is
![1000kg/m^3](https://img.qammunity.org/2023/formulas/physics/high-school/o90lzcgxmjsnlk7sdvtnu3yvu0aly1a6yl.png)
and g is the gravity whose value is
![9.81m/s^2](https://img.qammunity.org/2023/formulas/chemistry/high-school/wufdva9gbfmrsdbbr9qmejx5ksqscwvgau.png)
Substituting the values in the above equation, we get:
![\begin{gathered} P_T=330\text{ kPa}(\frac{1000N/m^2}{1\text{ kPa}})+1000kg/m^3*9.81m/s^2*12m((1N/m^2)/(1kg/ms^2)) \\ =447720N/m^2(\frac{1\text{ Pa}}{1N/m^2})(\frac{1\text{ kPa}}{1000\text{ Pa}}) \\ =447.72\text{ kPa} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/high-school/vu7i7afcc6j32lbjrcqzq15ehxmh6ogqiv.png)
Thus, the water pressure at the ground level is 447.72 kPa.