Given:-
The length of a rectangle is 6 feet longer than three times its width.
Area of the rectangle is 144.
To find:-
The width and the length.
Assume that L is length and w is width.
So from the given data we have,
![l=6+3w](https://img.qammunity.org/2023/formulas/mathematics/college/5qttvgb3ri0ekbyc880hsbkqoehtr8d1ur.png)
gi1ven area is 144.
So the formula for area is,
![A=l* w](https://img.qammunity.org/2023/formulas/mathematics/college/lmmzpu3pbc5f31ild3jzkycy7t9l4cj8y8.png)
Subsituting the known values we get,
![144=(6+3w)* w](https://img.qammunity.org/2023/formulas/mathematics/college/9xq9bsnwv0m7qia123htb18hpjivv5mehe.png)
Simplifying the above equation we get,
![\begin{gathered} 3w^2+6w=144 \\ 3w^2+6w-144=0 \\ w^2+2w-48=0 \\ w^2+8w-6w-48=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ix08xv4vsz5qplxdj87uzpne3e735gm85.png)
So by simplifying furthur we get,
![\begin{gathered} w(w+8)-6(w+8)=0 \\ (w+8)(w-6)=0 \\ (w+8)=0,(w-6)=0 \\ w=-8,w=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b3drwf3l6iwgldtvotv1n1wg6t5b5ylf0q.png)
The value of w is 6. ( we neglate -8 since width cannot be in negative )
Now we substitute the value of w in the equation L. we get,
![\begin{gathered} l=6+3w \\ l=6+3*6 \\ l=6+18 \\ l=24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pmrembhaxow13npmj3wsgxejfepwh9klmt.png)
So the required value of length is 24ft and width is 6ft.