50.3k views
3 votes
2x-y-3z=1 / 4x+3y+2z=-4 / -3x+2y+5z=-3 solve using elimination

User Vaseltior
by
3.6k points

1 Answer

0 votes

x = 2

y = -6

z = 3


\begin{cases}E_1\Rightarrow2x-y-3z=1 \\ E_2\Rightarrow4x+3y+2z=-4 \\ E_3\Rightarrow-3x+2y+5z=-3\end{cases}

I named the equation to make it more simple.

To solve for elimination, we can multiply E1 by (-2) to eliminate the 4x in E2


\begin{gathered} (4x+3y+2z=-4)+(-2)(2x-y-3z=1)\Rightarrow0x+5y+8z=-6 \\ \end{gathered}

Now the system is:


\begin{cases}E_1\Rightarrow2x-y-3z=1 \\ E_2\Rightarrow5y+8z=-6 \\ E_3\Rightarrow-3x+2y+5z=-3\end{cases}

We can continue by eliminating the (-3x) in E3. THen multiply E1 by (3/2) and add it to E3:


(-3x+2y+5z=-3)+(3)/(2)(2x-y-3z=1)\Rightarrow0x+(1)/(2)y+(1)/(2)z=-(3)/(2)

Now the system is:


\begin{cases}E_1\Rightarrow2x-y-3z=1 \\ E_2\Rightarrow5y+8z=-6 \\ E_3\Rightarrow(1)/(2)y+(1)/(2)z=-(3)/(2)\end{cases}

Let's continue by eliminating y. Then we multiply E2 by -(1/10) and add it to E3:


((1)/(2)y+(1)/(2)z=-(3)/(2))+(-(1)/(10))(5y+8z=-6)\Rightarrow0y-(3)/(10)z=-(9)/(10)

The system is now:


\begin{cases}E_1\Rightarrow2x-y-3z=1 \\ E_2\Rightarrow5y+8z=-6 \\ E_3\Rightarrow-(3)/(10)z=-(9)/(10)\end{cases}

Now we can know the value of z:


-(3)/(10)z=-(9)/(10)\Rightarrow z=(-(9)/(10))\cdot(-(10)/(3))=3
\begin{cases}E_1\Rightarrow2x-y-3z=1 \\ E_2\Rightarrow5y+8z=-6 \\ E_3\Rightarrow z=3\end{cases}

Now we can replace z in E2:


\begin{gathered} 5y+8\cdot3=-6 \\ y=-(30)/(5) \\ y=-6 \end{gathered}
\begin{cases}E_1\Rightarrow2x-y-3z=1 \\ E_2\Rightarrow y=-6 \\ E_3\Rightarrow z=3\end{cases}

Finally, replace y and z in E1:


\begin{gathered} 2x-y-3z=1\Rightarrow2x-(-6)-3\cdot3=1 \\ x=(4)/(2)=2 \end{gathered}

The solution of the equation is:


\begin{cases}x=1 \\ y=-6 \\ z=3\end{cases}

User Vu Phung
by
3.6k points