Probability:
Women (W)= 130
Men (M) = 400 - 130 = 270
Total = 400
Prob(W) = 130/400 = 13/40
Prob(M) = 270/400 = 27/40
a. Probability of selecting one woman out of 3 applicants:
Possible outcomes = {WMM, MWM, or MMW}
![\begin{gathered} \text{Prob(One Woman)}=\text{ (}(13)/(40)*(27)/(39)*(26)/(38))\text{ +(}(27)/(40)*(13)/(39)*(26)/(38))\text{ + (}(27)/(40)*(26)/(39)*(13)/(38))\text{ = 3 x( }(27)/(40)*(26)/(39)*(13)/(38)) \\ \\ \text{ = 0.4618 }\approx\text{ 0.46} \end{gathered}]()
b. Possible outcomes = {WWM, WMW, or MWW}
![\begin{gathered} \text{Prob(Two Women) = (}(13)/(40)*(12)/(39)*(27)/(38))\text{ + (}(13)/(40)*(27)/(39)*(12)/(38))\text{ + (}(27)/(40)*(13)/(39)*(12)/(38))\text{ = 3(}(13)/(40)*(12)/(39)*(27)/(38)) \\ \\ \text{ = 0.213 }\approx\text{ 0.21} \end{gathered}]()
c. Possible outcomes = (WWW)
![\text{Prob(WWW) = }(13)/(40)*(12)/(39)*(11)/(38)=0.0289\approx0.03](https://img.qammunity.org/2023/formulas/mathematics/college/c9wyrh2jbrdb0y4wdl1iael9un547vc76m.png)
d.
![\text{Prob(None is a woman) = 1-Prob(WWW)=1-0.0289 = 0.971}\approx0.97](https://img.qammunity.org/2023/formulas/mathematics/college/b4wr4spdhjzxnd0paj7c7ed6x62kshkq4f.png)
The correct answers are: a. 0.46
b. 0.21
c. 0.03
d. 0.97