The SOLUTION
Recall the formula for compound interest formula
![A=P(1+(r)/(n))^(nt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/39foo2gerf9tf1ffk32zwshrn339mz02kv.png)
For the amount to double then A=2P
From the question it follows:
![\begin{gathered} r=2\%=0.02 \\ n=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kpvoxowjx2dkf1bowr0xg35x0f05mffva7.png)
Substituting these values gives:
![2P=P(1+(0.02)/(4))^(4t)](https://img.qammunity.org/2023/formulas/mathematics/college/hfqd3z5ngcnq28er6wh8quohajhoema6e5.png)
Solve for t
![\begin{gathered} 2=1.005^(4t) \\ \Rightarrow t\approx34.74 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/efs0rs8cmxgbu6whhkl77kmdlaom9suqds.png)
Therefore the number of years it will take for the amount to double is 34.74 years
Using the compounded continuously formula
Substituting values gives
![2P=Pe^(0.02t)](https://img.qammunity.org/2023/formulas/mathematics/college/3f00xxet5janqp25od8tbqy6cjyxjwys0q.png)
Solve for t
![\begin{gathered} 2=e^(0.02t) \\ \Rightarrow t\approx34.66 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m2wihlb7tqe0o756vlgtz9cvd7rra0vwib.png)
For compounded continuously, the investment will double in about 34.66 years