SOLUTION
Given the question in the question tab, the following are the solution steps for getting the answers
Step 1: Let the odd integers be 2n+1 and 2n+3, where n is an integer. The statements in the question can be written as:

Step 2: Solve tne mathematical equation to get the value of n

Step 3: Solve the quadratic equation in step 2 using formular method to get the values of n
![\begin{gathered} a=1,b=-2,c=-24 \\ \text{formula}=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \Rightarrow\frac{-(-2)\pm\sqrt[]{(-2)^2-4(1)(-24)}}{2(1)}=\frac{2\pm\sqrt[]{4+96}_{}}{2}=\frac{2\pm\sqrt[]{100}}{2} \\ \Rightarrow(2+10)/(2),(2-10)/(2) \\ \Rightarrow(12)/(2),-(8)/(2) \\ \Rightarrow6,-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ssd0v50jl8njupzm0l9s29rfp2lh4inrsz.png)
Step 4: Substitute the values gotten for n in the expression given in step 1 to get the odd numbers

It can be seen from the solution above that there are two solutions.
