To rotate ΔABC 90º counterclockwise using the point P as the center of rotation, the first step is to subtract the coordinates of P to the coordinates of each vertex of the triangle:
1) Subtract P(-2,1) to each vertex:
A(0,-2) → A(0-(-2),-2-1) → A(2,-3)
B(-2,-3) → B((-2)-(-2),(-3)-1) → B(0,-4)
C(-1,-5) → C((-1)-(-2),(-5)-1) → C(1,-6)
2) Following the rule, perform the rotation 90º counterclockwise about the origin:
A(2,-3) → A(-(-3),2) → A(3,2)
B(0,-4) → B(-(-4),0) → B(4,0)
C(1,-6) → C(-(-6),1) → C(6,1)
3) Add P(-2,1) to each vertex:
A(3,2) → A'(3+(-2),2+1) → A'(1,3)
B(4,0) → B'(4+(-2),0+1) → B'(2,1)
C(6,1) → C'(6+(-2), 1+1) → C'(4,2)
So, the coordinates of ΔA'B'C' are: