193k views
5 votes
This one is really hard I have been stuck for about 3 hours. PLEASE HELP

This one is really hard I have been stuck for about 3 hours. PLEASE HELP-example-1
User Massi
by
7.8k points

1 Answer

4 votes

Given,

The expression is,


√(y)+6xy=5

Required

The double differentiation of the given function.

Differentiating the expression with respect to x then,


\begin{gathered} (d)/(dx)√(y)+6xy=(d)/(dx)5 \\ (1)/(2√(y))(dy)/(dx)+6x(dy)/(dx)+6y=0 \\ (dy)/(dx)((1)/(2√(y))+6x)+6y=0 \end{gathered}

Differentiating the function again with respect to x then,


\begin{gathered} (d)/(dx)((dy)/(dx)((1)/(2√(y))+6x)+(d)/(dx)6y=0 \\ (d)/(dx)((1)/(2√(y))(dy)/(dx)+6x(dy)/(dx))+(d)/(dx)6y=0 \\ (1)/(2√(y))(d^2y)/(dx^2)-((dy)/(dx))^2(1)/(4y√(y))+6x(d^2y)/(dx^2)+6(dy)/(dx)+6(dy)/(dx)=0 \\ (d^2y)/(dx^2)((1)/(2√(y))+6x)=(1)/(4y√(y))((dy)/(dx))^2-12(dy)/(dx) \end{gathered}

Substituting the value of dy/dx then,


\begin{gathered} (d)/(dx)((dy)/(dx)((1)/(2√(y))+6x)+(d)/(dx)6y=0 \\ (d)/(dx)((1)/(2√(y))(dy)/(dx)+6x(dy)/(dx))+(d)/(dx)6y=0 \\ (1)/(2√(y))(d^2y)/(dx^2)-((dy)/(dx))^2(1)/(4y√(y))+6x(d^2y)/(dx^2)+6(dy)/(dx)+6(dy)/(dx)=0 \\ (d^2y)/(dx^2)((1)/(2√(y))+6x)=(1)/(4y√(y))((dy)/(dx))^2-12(dy)/(dx) \end{gathered}

User Swbradshaw
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories