193k views
5 votes
This one is really hard I have been stuck for about 3 hours. PLEASE HELP

This one is really hard I have been stuck for about 3 hours. PLEASE HELP-example-1
User Massi
by
5.0k points

1 Answer

4 votes

Given,

The expression is,


√(y)+6xy=5

Required

The double differentiation of the given function.

Differentiating the expression with respect to x then,


\begin{gathered} (d)/(dx)√(y)+6xy=(d)/(dx)5 \\ (1)/(2√(y))(dy)/(dx)+6x(dy)/(dx)+6y=0 \\ (dy)/(dx)((1)/(2√(y))+6x)+6y=0 \end{gathered}

Differentiating the function again with respect to x then,


\begin{gathered} (d)/(dx)((dy)/(dx)((1)/(2√(y))+6x)+(d)/(dx)6y=0 \\ (d)/(dx)((1)/(2√(y))(dy)/(dx)+6x(dy)/(dx))+(d)/(dx)6y=0 \\ (1)/(2√(y))(d^2y)/(dx^2)-((dy)/(dx))^2(1)/(4y√(y))+6x(d^2y)/(dx^2)+6(dy)/(dx)+6(dy)/(dx)=0 \\ (d^2y)/(dx^2)((1)/(2√(y))+6x)=(1)/(4y√(y))((dy)/(dx))^2-12(dy)/(dx) \end{gathered}

Substituting the value of dy/dx then,


\begin{gathered} (d)/(dx)((dy)/(dx)((1)/(2√(y))+6x)+(d)/(dx)6y=0 \\ (d)/(dx)((1)/(2√(y))(dy)/(dx)+6x(dy)/(dx))+(d)/(dx)6y=0 \\ (1)/(2√(y))(d^2y)/(dx^2)-((dy)/(dx))^2(1)/(4y√(y))+6x(d^2y)/(dx^2)+6(dy)/(dx)+6(dy)/(dx)=0 \\ (d^2y)/(dx^2)((1)/(2√(y))+6x)=(1)/(4y√(y))((dy)/(dx))^2-12(dy)/(dx) \end{gathered}

User Swbradshaw
by
5.5k points