Given:
The equal charges are placed at a distance of
![\begin{gathered} r=3.606\text{ cm} \\ =3.606*10^(-2)\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/tofqztw02ylbgee2bv1cjgwpodoblkurz4.png)
The mass of each charge is,
![\begin{gathered} m=2.307\text{ g} \\ =2.307*10^(-3)\text{ kg} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/w0hqc5zw2cu1nb3a5loyo6ghstn3is2d54.png)
The acceleration of each charge is,
![a=216.783\text{ m/s}^2](https://img.qammunity.org/2023/formulas/physics/college/wu8tmhjfjrd1zbvqc12691b5l2g91ephwy.png)
To find:
The magnitude of the charge on each sphere
Step-by-step explanation:
The electric force due to the charges supplies the acceleration of the charges. The electric force is,
![\begin{gathered} F=(kq^2)/(r^2) \\ F=(9*10^9* q^2)/((3.606*10^(-2))^2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/11w3ijysatrbaypcspdntw67fvsfk2m5gk.png)
Here, k is the Coulomb constant.
We can write,
![\begin{gathered} F=ma \\ (9*10^9* q^2)/((3.606*10^(-2))^2)=2.307*10^(-3)*216.783 \\ q^2=(2.307*10^(-3)*216.783*(3.606*10^(-2))^2)/(9*10^9) \\ q^2=7.23*10^(-14) \\ q=\pm2.69*10^(-7)\text{ C} \\ q=\pm0.269\text{ }\mu C \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/426jotoz11ppktsumylp0vqx6aymzl20xq.png)
Hence, the magnitude of each sphere is,
![\pm0.269\text{ }\mu C](https://img.qammunity.org/2023/formulas/physics/college/d4fccb7ppucjwr4irsx75br7bhite4gezp.png)